RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2019 FIRST YEAR (BATCH 2019-22) INDUSTRIAL CHEMISTY (Honours) Paper : II [CC2]

Date : 13/12/2019 Time : 11 am - 1 pm

Answer any five questions of the following:

[5×10]

[2]

[2]

[3]

[2]

[2]

[4]

[2]

[2]

Full Marks : 50

- a) Isothermal reversible work of expansion for an ideal gas is greater than that for an irreversible process between the same initial and final state Explain. [4]
 b) K_{eq} for the reaction Fe³⁺ + Ag ⇐ Fe²⁺ + Ag⁺ is 0.531 at 298K. Calculate E⁰_{Ag+/Ag}. (Given
 - $E_{Fe^{3+}/Fe^{2+}} = 0.77V$) c) Sketch the plot of conductometric titration of HCl with NaOH and explain it.
 - d) Ionic conductivity at infinite dilution of Al^{3+} and SO_4^{2-} ions are 189 S cm² eq⁻¹ and 160 S cm² eq⁻¹ respectively. Calculate the equivalent conductance of $Al_2(SO_4)_3$ at infinite dilution. [2]
- 2. a) The mobility of NH_4^+ ion is $7.623 \times 10^{-8} \text{ m}^2 \text{ v}^{-1} \text{ s}^{-1}$. Calculate:
 - (i) The ionic conductivity of the NH_4^+ ion.
 - (ii) The velocity of the ion if 15.0 V is applied across electrodes 25 cm apart. [2+2]
 - b) 3 mol H₂(g) and 1 mol N₂(g) are in two compartments of equal volume respectively at same temperature. What is the value of ΔS_{mix} when partition between the compartments is removed. (Assume perfect gas behavior). [3]
 - c) Show that $\mu_{JT} = V / C_p (\alpha T 1)$ where α is the temperature co-efficient of volume expansion.
- 3. a) Efficiency of a carnot engine working between 127°C and t°C (where t>127 °C) is 0.5. Calculate t and heat rejected to the surrounding when work done by the engine per cycle is 100J.
 - b) Point out the characteristics of a first and second order phase transition and give their corresponding plots. [3]
 - c) A piston filled with 0.04 mole of an ideal gas expands reversibly from 50.0 ml to 375 ml at a constant temperature of 37.0 °C. What is the value of q, w and ΔU for this process? [3]
 - d) Heat capacity at constant pressure is greater than heat capacity at constant volume. Why?
- 4. a) Define "ionic mobility". Derive a relation between ionic mobility and ionic conductance (λ) at infinite dilution.
 - b) Categorize the following properties of a thermodynamic system extensive or intensive?
 Specific heat capacity, internal energy, molar volume & chemical potential.
 - c) Proof that $(\partial S / \partial V)_T = (\partial P / \partial T)_V$.
 - d) Prove that for an ideal gas adiabatic slope is steeper than isothermal for P vs. V diagram. [2]

- 5. a) Calculate the change in entropy for the process: Benzene (268 K, liq) to Benzene (268 K, Solid) Given: Normal freezing point of benzene 278 K; $\Delta H(\text{fussion}) = 9956 \text{ J/mole}$; C_P (liq) = 127.3 Jmol⁻¹K⁻¹; Cp(solid) = 123.6 Jmol⁻¹K⁻¹.
 - b) Why the equivalent conductance of weak electrolytes at infinite dilution values cannot be obtained by plotting equivalent conductance vs. \sqrt{C} where for strong electrolyte it obtained from the plot Explain with proper justification.
 - c) Calculate the E^o for the cell $Pt|H_2|H^+(aq)||Fe^{3+}(aq)||Fe$

Given at 298K,
$$E_{Fe^{2+}/Fe}^0 = -0.44V$$
 and $E_{Fe^{3+}/Fe^{2+}}^0 = 0.77V$.

6. a) The decomposition of accetaldehyde was studied in the gas phase at 791 K. The results of two measurements are:

Initial Conc. (mol/L)	9.72 (10 ⁻³)	4.56 (10 ⁻³)
Half-life(s)	328	572

- i) What is the Order of the reaction?
- ii) Calculate the rate constant for the reaction with proper unit.
- b) A drug product is known to be ineffective after it is decomposed 25%. After 20 months, the original concentration was dropped from 5.0 mg/ml to 4.2 mg/ml. Assuming the decomposition is first order, what should be the expiration time on the label? [3]
- c) Draw the Jablonski diagram showing each state and processes. State Franck-Condon principle and explain its role in Jablonski diagram. [4]

7. a) Show that
$$t_{\frac{1}{2}} = \frac{1}{[A]^{n-1}}$$
 for a reaction that is *n*th order in $A(n \neq 1)$. [3]

- b) State Stark-Einstein Law of Photochemical equivalence.
- c) Explain Steady state principle. Derive the overall rate equation for a parallel reaction where reactant *A* is simultaneously converted to *B* and *C* and the rate constants are k_1 and k_2 respectively. [2+3]
- 8. a) Consider a photochemical reaction $A \xrightarrow{hv} B + C$. when irradiated with light of wavelength 2537 Å during a certain period, the light energy absorbed = 3.436×10^8 erg and the number of moles of *B* formed = 3.64×10^{-6} mole. Calculate the quantum yield. [3]
 - b) The quantum yield for the decomposition of HI is 2 but after sometime it comes down from 2. Explain with proper mechanism. [3]
 - c) Why chain inhibition step is occurred in HBr chain reaction?
 - d) Explain: HCl and HBr chain reactions are occurred but HI not.

_____ X _____

[4]

[3]

[3]

[3]

[2]

[2]

[2]